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Minimum-Impulse Time-Free Transfer 

Between Elliptic Orbits 

ABSTRACT 

Minimum-impulse orbit transfer between coplanar ellipses and between 
neighboring low-eccentricity ellipses was investigated.- In the former case, 
all optimal elliptic transfer arcs were isolated and cataloged, and a 
graphical method for determining the optimal transfer between arbitrary 
coplanar ellipses was presented. In the latter case, explicit relations 
were derived for the optimal transfer between adjacent ellipses whose . 
elements are known. 
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Frank W. Gobetz, Michael Washington and Theodore N. Edelbaum 

SUMMARY 

The method of primer vector maximization has been applied to two classes 
of time-free, impulsive, orbit transfer problems. The first class concerns 
coplanar transfers between arbitrary elliptic orbits. For this case, two 
distinct families of transfer arcs were isolated, one with Lawden's symmetric 
transfer as a limiting solution, and one limited by the Iawden spiral. A 
complete catalog of data for all optimal arcs of these families was made in 
terms of parameters useful in solving specific problems. A sample problem was 
successfully solved using these data. 

In addition to the cataloging of optional arcs, a geometric interpretation 
of the coplanar problem is described. By a digital simulation, spool-shaped 
figures discovered by Contensou were visually displayed and photographed. The 
results are discussed as they apply to the families of coplanar solutions. 

The second problem treated is that of time-free transfer between 
neighboring orbits of small eccentricity. A complete analytic solution was 
obtained for this problem. Explicit expressions are given for the optimum 
location, direction, and magnitude of each impulse. The solutions are 
found to require either two or three impulses. In the three-impulse cases, 
the solutions are singular and may be replaced by finite-thrust solutions of 
arbitrary magnitude with no increase in fuel consumption. 

INTR3DUCTION 

The problem of transferring between elliptic orbits with minimum 
expenditure of impulse in the restricted two-body problem is one which has 
been solved only for certain special cases. In general, minimum-impulse 
solutions to particular orbit transfer problems have been obtained either 
by numerical search or by approximate analytical methods. These solutions 
serve limited purposes because they are designed to apply only to particular 



terminal orbits or families of orbits, and because they are based on assumptions : 
regarding the number of impulses involved in the transfer. The complexity of ! 
minimal-impulse problems has prevented the attainment of more general solutions, 
but a clear need exists for such solutions. 

The purpose of this study was to explore .,he case of time-free, minimum- 
impulse transfer, utilizing a method inspired by the contributions of Iawden, 
Contensou, and Breakwell, and with the hope of tabulating solutions to this 
problem for use with a wide range of possible elliptic terminal orbits. In 
view of the large number of parameters involved, the problem has been divided 
into two categories. The first concerns coplanar, time-free transfers between 
elliptic orbits. The second involves a linearized, three-dimensional model 
with neighboring terminal orbits of low eccentricity. Treatment of the 
general three-dimensional problem, while it is feasible in principle by the ' 
method described herein, would require consideration of additional variables, 
thereby greatly complicating the task of tabulating transfers. Therefore: 
this most general time-free case was not considered in this study. 

.Solution of an orbital transfer problem requires the determination of a 
coasting arc (or arcs) to join the terminal orbits. Since departure and 
arrival terminals are left unspecified, a multitude of possible arcs must be 
chosen from in order to select the optimum transfer. The appropriate figure 
of merit in making this selection is minimum characteristic velocity, i.e., 
AV. It is apparent that a direct method of solution would be to express AV 
as a function of the state variables of the problem, perhaps orbital elements, 
and to successively differentiate AV to optimize these state variables. 
Unfortunately this method of solution, although feasible, results in a set of 
simultaneous equations which cannot be solved explicitly and which provide 
no physical interpretation of the results. 

The approach taken herein may be described as the method of primer 
vector maximization. Specifically, the technique permits isolation of all 
possible elliptic coasting arcs of optinvsl transfer trajectories. These 
arcs are merely segments of elliptic orbits, but not all segments of arbitrary 
elliptic orbits are candidates for optimal coasting arcs. By exclusion of 
those arcs which do not fulfill the necessary conditions derived by Lawden in 
Ref. 1 for optimal coasting ellipses, the remaining arcs may be tabulated. 
A mjor objective of this contract was the tabulation of these data for both 
the nonlinear coplanar problem and a linearized noncoplanar problem. 
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BACKGFSXJND 

In general, determination of optimum impulsive transfer trajectories 
requires answers to four questions. First, how many impulses should be 
applied to effect the desired transfer7 Second, where should these impulses 
be applied? Third, in what directions should the impulses be applied? 
And finally, how should the total impulse be distributed if more than one 
impulse is involved? 

The state of current knowledge with regard to the first question has 
been treated by Edelbaum in a recent paper, Ref. 2. This problem is probably 
the most difficult of the four. It is apparent that single-impulse transfers 
are possible only if the terminal orbits intersect; but in most cases which 
have been investigated numerically, single-impulse transfers have been found 
to be less economical than multi-impulse transfers. Most frequently, two 
impulses are considered in planning practical orbit transfers because, on the 
one hand, terminal orbits do not always intersect and, even when they do, 
single-impulse transfers may be costly of fuel; and on the other hand, multi- 
impulse transfers (greater than two) require repeated restarting of propulsion 
engines which introduces reliability and lifetime problems. These considerations 
will become less crucial as space flight is made routine, however, and if sub- 
stantial savings are available through multiple applications of thrust, these 
savings may eventually be realized. 

The question of where to apply the impulses has received somewhat more 
attention since, once it has been assumed that a certain number of impulses 
is to be applied in a given problem, the best locations of the impulses can 
be determined by numerical search. Generally speaking, any point on an 
ellipse is a possible impulse point, except in a single-impulse transfer 
when the intersection point of the ellipses must be used. Of the known 
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minimizing solutions, all but Iawden's synuzetric transfer (described below) 
involve thrust impulses applied at apses of the transfer and terminal 
ellipses. On the basis of some numerical solutions to two-impulse coplanar 
transfers in Ref. 3, it was noted that when the terminal orbits intersect, 
impulse requirements are sensitive to the points of application of the two 
impulses. For nonintersecting orbits, however, total impulse was found to 
be relatively insensitive to the location of impulse points. 

It has been shown by Moyer, in Ref. 4, that the thrust direction for an 
optimum single-impulse coplanar transfer always lies between the velocity 
vector and the local horizontal and tends to be closer to the latter. The 
impulse may also be exactly opposite, i.e., 180 deg from this direction, but 
in either case it will result in a relatively small change in direction of the 
velocity vector. 

Magnitudes of the individual impulses in a multiple-impulse transfer 
vary from case to case, but show one tendency which can be explained. When 
large energy changes are necessary, the major part of the total impulse is 
usually applied at the terminal point closest to the center of attraction 
because energy can be added most efficiently where velocity is greatest, and 
velocity is greatest near the focus. 

Only two minimizing solutions are known for time-free transfer when the 
orbits are all coplanar ellipses. One of these is the familiar Hohmann-type 
transfer between co-apsidal ellipses which requires tangential impulses 
applied at the apses. Figure 1 is a summary of known solutions of this type 
as described in Ref. 5. The second known solution was obtained by both 
Plimmer and Iawden, Refs. 5 and 6, and is a transfer between congruent 
ellipses whose major axes are skewed. This case, referred to herein as a 
symmetric transfer, involves a coasting orbit whose major axis is the line 
of symmetry of the transfer. A typical example of a symmetric transfer is 
presented in Fig. 2 which is taken from Ref. 5. 

Some other solutions which are small perturbations of the Hohmann-type 
transfer have been developed for coplanar coaxial ellipses, Ref. 7, and 
inclined coaxial ellipses, Ref. 8. In a recent work, Ref. 9, several 
interesting discoveries were made concerning coplanar transfers. Reference 
9 is especially pertinent to the first problem treated in the present study. 

METHOD OF ANALYSIS 

The problem of determining the optimal, time-free impulsive transfer 
between two elliptic terminal orbits in an inverse-square field may be treated 
as a problem in the calculus of variations since it requires the determination 
of a trajectory x(t) which minimizes a functional, in this case AV. Much of 
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the pioneering work in solving this problem has been done by Iawden, and in 
Ref. 1 his contributions are summarized in a concise form. Of particular 
interest for this study has been Lawden's derivation of the primer vector 
in his general theory of optimal rocket trajectories. 

The primer can best be described as a vector formed from components which 
are Lagrange multipliers introduced in the variational treatment of the 
problem. The multipliers which constitute the primer are those which are 
introduced in association with the velocity components of the state vector. 
Since the multipliers are often referred to as adjoint variables, the primer 
itself is often referred to as an adjoint :ector. 

One of Lawden's major contributions, and the foundation upon which the 
method used in this study was constructed, is the discovery of the primer 
and its characteristics. The primer always points in the direction of optimum 
thrust application, and thrusting periods are determined by the value of the 
primer. That is, when the primer exceeds a certain value, thrust is turned 
on full, and when it is less than this value, thrust is turned off. If an 
intermediate thrust arc is part of the trajectory, the primer is constant 
over this arc. 

For the case of impulsive application of thrust treated in the present 
study, thrust is considered to be infinite in magnitude and to act over an 
infinitesimally small time duration. Lawden has shown that in this case the 
following conditions for an optimal trajectory must be satisfied (Ref. 1): 

1. The primer and its time derivative must be continuous everywhere, 

2. Whenever the rocket motor is operative, the thrust must be aligned 
with the primer which must have a certain constant magnitude, P, 

3. The magnitude, p, of the primer must not exceed P on any coasting 
arc, 

4. The time derivative of p is zero at all junction points not coin- 
cident with the terminals. 

Because of condition 3, the primer assumes its maximum value, P, at 
each junction. The magnitude of P is arbitrary and is assumed to be unity in 
the present study. Therefore, whenever p = P = 1, a thrust impulse is applied. 

A derivation of the equations for the primer components X, p, and v 

appears in Chapter 5 of Ref. 1. These components are, respectively, in the 
radial, circumferential, and normal directions and are depicted in Fig. 3. 
The circumferential direction is defined to be perpendicular to the radius 
vector in the plane of and in the same sense as the motion. The normal 
direction completes the right-handed orthogonal triad. The following are 
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'Lawden's equations describing the components of the primer in terms of orbital 
eccentricity, e, true anomaly, f, and the integration constants, A,, B, C, 
D, E, and F. These equations constitute the starting point of the present 
study. 

A = Acosf + Besinf + CI, (e, f) 

P = 
D - Asinf - Asinf + WI + ecosf) + , + ecosf + CI,(e,f) 

Ecosf + Fsinf 
Y = 

I + ecosf 

(1) 

(2) 

(3) 

p* = A2 + p* + Y2 

It is of interest to consider the integration constants. The physical 
il.terpretation of these constants is better understood when orbital 
elements are used as state variables rather than the polar coordinates used by 
Lawden. It is possible to show that these constants are -the Lagrange 
multipliers associated with orbital element state variables. Since the 
multiplier& can be expressed as the partial derivatives of the payoff with 
respect to the associated state variables (Ref. lo), the following proportion- 
alities indicate the nature of the integration constants. 

A 0: aav/aw 

B Q aAv/aa 

(5) 

(6) 

C.= aAV/at (7) 

D = aAV/aa (8) 
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(9) , 

(10) 

where g,, go, gar & are functions of n, u), and I. For the special case where 
the time of the transfer is not prescribed, the constant C is zero, thereby 
eliminating the integral functions I, and Ia (e, f) from the equations. 

Under the assumption of impulsive thrust application, an optimal trajectory 
can be regarded as a succession of coasting arcs separated by junction points 
which represent impulses. Included in this series of arcs are the terminal 
orbits themselves. In effect, with time open, the orbital motion of a bcdy in 
the initial terminal orbit is part of the transfer, since it will coast in 
this orbit until it reaches the point where the primer is a maximum. At this 
point, an impulse is applied, thereby establishing a new orbit which is also 
entered at a maximum of p. But this new orbit must have the unique feature 
that the primer goes through another equal maximum at some other point (true 
anomaly); other&ise subsequent transfer to another orbit would not be optimal. 
At this second maximum of p, transfer is made to the next arc, which may or 
may not be the final terminal orbit, depending on the optimum number of 
impulses required to effect the transfer. 

In any case, it is evident that by piecing together transfer arcs, the 
optimum transfer can be generated in this manner. However, only transfer 
arcs which are characterized by double maxima of p are candidates for optimum 
coasting arcs. Therefore, by applying Lawden's conditions on p to all 
elliptic orbits, those arcs which are candidates for optimal coasting arcs may 
be determined and cataloged. 

COPIANAR TRANSFERS 

Analysis 

Necessary Conditions 

The first task to be undertaken is that of cataloging optimum coasting 
arcs for coplanar transfers. For this case, the equations for the primer 
components reduce to 

A = A cos f + Be sin f (11) 
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p=-Asinf+B(l+ecosf)+ D-A sin f 
l+ e co9 f (12) 

(13) 

where, in Eq. (13) the maximum value of p is arbitrarily set at unity. Since 
h and p are proportional to the direction cosines of p, a thrust angle, I$, msy 
be defined as the angle between the projection of p on the A, p plane and the 
perpendicular to the radius vector in the direction of motion (counterclockwise), 
as shown in Fig. 3. 

If an ellipse contains a coasting arc, it will be possible to find a double 
maximum of p; i.e., there will be two values of f on the orbit for which p is 
both a local maximum and equal to unity. As many as three maxima and three 
minima of p are possible in this coplanar problem, but some primer vector loci 
will contain fewer than two maxima, and most of those which contain two maxima 
will have unequal peaks. The result is that the category of optimal arcs is 
restricted to a particular subset of all possible arcs. It will be noted from 
the form of Eqs. (11) through (13) that the semimajor axis, a, does not appear. 
Therefore, optimal arcs may be tabulated according to the eccentricity of 
ellipses of which they are segments, and the size of the ellipses need not be 
specified. 

It now remains to satisfy 

SEC0 
af 

and 

(15) 

for two values of f for a given e. This process might be done graphically by 
selecting f, A, and e, and finding the combinations of B and D which satisfy 
these conditions. For given f, A, and e, two sets of satisfactory values of 
B and D are found, so that by varying f these sets will form a locus of 
possible optimal arcs. Each point on the curve represents a value of f. 
Therefore, if the curve crosses itself, two values of f exist for which Lawden's 
conditions are met. In Fig. 4, a typical diagram of the B vs D locus is depicted 
for e = 0.5, A = 0.3. The upper and lower branches of the curve are seen to be 
synznetrical, with two crossings shown. These crossings represent two congruent 
arcs which are reflections about the major axis of an e = 0.5 ellipse as indicated 
by the true anomaly values noted in Fig. 4. 

10 



In principle, all optimum coasting arcs could be determined by this graphicai 
approach. However, problems of sensitivity of the results have made it desirable 
to choose an alternate method, utilizing a computer to obtain sufficient 
accuracy. If the conditions of Eqs. (14) and (15) are applied to Eqs. (11) 
through (13), a system of four equations results. The exact form of these 
equations is given in Appendix A. In functional form they are: 

P (A, B, D, e, fl) = 1 

ap (A, B, D, e, fl> = o 

a fl 

P (A, B, D, e, fs) = 1 

ap (A, B, D, e, f2) = o 
af2 

(16) 

(17) 

(1.8) 

(19) 

For fixed e and A, these equations constitute a system of four equations in 
the four unknowns B, D, f,, and f,, where the subscripts 1 and 2 refer to 
the double maximum of p. In addition, a second derivative test insures that 
the extreme are mxima and not minima. Using Newton's method, these equations 
have been programmed for the IBM 7094 computer. 

Several problems were encountered in obtaining the solutions. The first 
problem was to isolate the region of acceptable values of A. In the course 
of pursuing the graphical apprmch described above, it was observed that two 
limiting cases, Iawden's symmetric transfer and the Lawden spiral, constitute 
upper bounds on A, and that at higher values of A, no crossings occurred. 
Moreover, the form of the equations requires that solutions for A negative 
duplicate those determined for A positive. Apparently, A is bounded by these 
limiting cases, and by thus placing bounds on A, the region to be explored was 
narrowed and the task of calculating and tabulating solutions considerably 
reduced. 

The second problem was one of convergence of the computation scheme. 
The derivatives in Eqs. (17) and (19) were driven to zero to five significant 
figures, and the functions in Eqs. (16) and (18) were driven to unity to the 
same degree of accuracy. Proceeding from A = 0, convergence was achieved 
over a range of values of A. Then, before the end of the acceptable range of 
A values was reached, convergence to the desired accuracy was not achievable 
by the method being employed. But by an alternate method, employing a numerical 
search technique, some of the nonconvergent cases were forced to convergence to 
the desired accuracy. Therefore, it was concluded that the maxima had become 



-extremely flat in this region, causing the Newton-Raphson iteration to fail. 
The remaining points in the region of slow convergence were obtained to less 
than the desired accuracy to avoid an excessive penalty in computing time, but 
in view of the apparent flatness of the maxima, the Penalty in AV for slight 
inaccuracies in these data is inconsequential. 

If the equations of Appendix A describing necessary conditions for equal 
maxti of the primer are expanded, it can be shown that an equation of 6th 
degree in cos f results. Therefore, as many as three maxima and three minima 
are theoretically possible. However, the square of the primer has been used 
rather than the primer itself (as a mathematical convenience) and, consequently, 
three different roots may not actually be attainable. Furthermore, no evidence 
of a third root was found in the numerical solutions, thereby indicating that 
only two equal maxima of p occur in the coplanar case. 

Limiting Cases 

To determine the acceptable region of values of the constant A, several 
limiting cases were considered. These are the known optimum coplanar transfer 
solutions. The first is the Hohmann-type transfer for which f, and fs must 
be 0 or TT, and A = 0. The latter condition results from the fact that all 
ellipses in a Hohmann-type transfer are co-apsidal, or alternatively, the 
longitude of peri-apsis, w, is constant. By Eq. (5) then, A = 0. 

Lawden (Ref. 1) shows that the values of B and D are easily obtained for 
Hohmann-type transfers. There are basically two families. In the first family, 
impulses at both junction points act in the same direction, either both 
supporting or both opposing the motion. For this case, the points of inter- 
section occur when 

D = f $ (1 _ es) 

In the second family, one impulse supports the motion and one opposes it. 

B = f 1/2e (22) 

D = T(l - e2,)/2e (23) 
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Another limiting case, the symmetric transfer, has B = D = 0. When 
necessary conditions are applied with this simplification, an equation for A 
results. 

A = 
+(I + ecosf) 

J(l + ecosf? + (3 + 2ecosf)sin’f 

For given e, the angle f is determined at once from the condition ap/af = 0, 
so that the primer is known. 

One other limiting case is Lawden's spiral solution. Although these 
spirals are really intermediate thrust arcs (which were recently shown to be 
nonoptimal, Refs. 11 and 12) they may be interpreted as consisting of a 
series of infinitesimal impulses separated by infinitesimal coasting arcs or 
by almost a 360-deg coast (Ref. 13). Equations for the constants A, B, and 
D as well as for true anomaly, f, were,obtained from Ref. 13. If $I is the 
angle made by the primer with a perpendicular to the radius vector in the 
direction of motion, and n = sin a, then 

A = 
-3nV3 - 4n*) 

e(3 - 5n’) 
.“- 

B= 3n*diT? (I6 - 9ln’ + 149n4- 6On‘) 
es (3 - 4n2)(3 - 5n’)* 

3JI--;;? 
D = e’(3 - 5n2)(3 - 4n3 [ e2(3 - 4n*)*(l - 7n*+ IOn’) 

+ (e* - I) n’(lB - 9ln* + 149n4- Bon’)] 

ton f = -2JGF (I - 2n*) ( 3 - 4n*) 
n(7 - 2ln’ + 16n4) 

(25) 

(26) 

(27) 

(28) 

Here, n = sin ~5 must be selected to satisfy 

e* = 
9n4(7 - 2ln*+ 16n4)* + 36n’O - n’)( I - 2n212 ( 3 - 4n*) * 

(3 - 5n*)* (29) 
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Catalog of Data 

The solutions obtained by the method described above follow a distinct 
pattern. The most striking result is that all optimum transfer arcs fall 
into one of two families. The first family begins with a Hohmann-type 
transfer with both supporting or both opposing impulses, and ends with a 
Iawden spiral solution. This family is henceforward referred to as spiral- 
limited. The second family begins with a Hob.umnn-type transfer with impulses 
opposing one another, and ends with a symmetric transfer. This family is 
henceforward referred to as symmetric-limited. Representative solutions from 
these families are presented in Figs. 5 and 6 for e = 0.5. 

Spiral-limited solutions possess the property that both impulses either 
oppose or support the motion. In Fig. 5, straight lines join the impulse 
points which form extremities of optimum coasting arcs with e = 0.5. Either 
segment of the ellipse, i.e., Af > n or < n, may be used. But first, consider 
arcs entered nearer the focus. It is apparent that the Hohmann-type transfer, 
the longest arc, is entered at peri-apsis and departed at apo-apsis; the 
length of the transfer arc decreases monotonically as the spiral solution is 
approached. None of these arcs includes an apse. With the direction of motion 
assumed counterclockwise in Fig. 5 and the thrust directions illustrated in the 
sketch, all arcs are entered with true anomaly in the first or second quadrant, 
and end with true anomaly in the second quadrant. The spiral solution itself 
always lies within the range 

go0 5 f < l25O 

If points beyond the spiral solution are entry points into the transfer 
ellipse (coasting arcs:=rr), the thrust directions are reversed. Only half 
the spiral-limited solutions are shown in Fig. 5. The remainder are described 
by a reflection of the set shown about the major axis of the ellipse. These 
transfer arcs are identical to those shown but are described by f = -f and 
8 = -9. 

Symmetric-limited solutions show a different character, as illustrated 
in Fig. 6. Here, impulses are always applied in opposition to one another, 
and coasting arcs all pass through an apse of the ellipse. The limiting 
solutions are the symmetric transfer and the Hohumnn-type transfer. Thrust 
directions indicated in the sketch are appropriate for arcs entered near the 
focus (Af < TI); for Af > Jl, thrust directions must be reversed. As in the 
spiral-limited case, reflections exist for all the coasting arcs shown in 
Fig. 6. Again, these reflected arcs are described by f = -f and # ='i@. 

In ascertaining the appropriate thrust. directions at each junction point 
in Figs. 5 and 6, the data of Ref. 4 have been invaluable. The method used 
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herein predicts only the value of tan @ at each point so that thrust directions 
separated by Ti are always possible. But in Ref. 4, sufficient conditions are 
given to exclude one of these directions at each point. 

The solutions shown in Figs. 5 and 6 are representative of those obtained 
in the study. It is evident from these diagrams that, even for e = 0.5, many 
transfer arcs exist, each characterized by specific terminal points and thrust 
directions. Cataloging of these solutions has been a major goal of the study. 
A summary of computer output data describing spiral-limited transfers appears 
in Figs. 7 through I2 and similar data for symmetric-limited transfers appears 
in Figs. 13 through 18. In view of the way the solutions were generated, all 
curves are plotted against A. Subscripts 1 and 2 used with the parameters f and 
9 refer to initial and final impulse locations as indicated in Figs. 5 and 6. 
It is important to realize that any junction point may be an entry point into 
or departure point from the transfer ellipse. The subscripts are used only to 
identify the terminals as being nearer peri-apsis (subscript l), or nearer 
apo-apsis (subscript 2). 

Smry Curves 

In order to use the data summarized in Figs. 7 through 18 in practical 
orbit transfer problems, it is necessary to substitute parameters of physical 
significance. However, in order to retain the nondimensional character of the 
solutions and thereby generalize them to orbits of all sizes, no dimensional 
parameters should be introduced in the final presentation of the data. 

Mindful of the foregoing considerations, the following parameters have 
been chosen for presentation: the radius ratio, rs/r,, where the subscripts 
correspond to the initial and final junction points (only radius ratios greater 
than unity are tabulated since it is clear that "reflected" solutions account 
for all ratios less than one); the central angle of the transfer, Af = f,,-f,,; 
eccentricity, e; the thrust angles, & and @z; and the velocity components, 
wI and ws, normal to the primer at each junction. The significance of w, and 
ws lies in the fact that the component of velocity normal to p remains unchanged 
across a junction point, since all AV is applied in the direction of p. Since 
Aw E 0 across every junction, this condition must be tested at each such point 
and the tabulation of w1 and w, is indispensable. Both w, and ws are non- 
dimensional velocities, having been normalized with respect to the local circular 
velocity. For chosen values of A and e, the parameters f,, fs, fll and 6s may 
be read from Figs. 7 through 18. The radius ratio and norm1 velocity may be 
calculated from known quantities. 

r, .-l + e cos f, - -- 
r1 1 + e cos f, (30) 
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w = lsin @ Jl + e cos f - e sin f Cos @ 
1/l + e cos f 

(31) 

Since the.sign of w is unimportant, absolute value signs are used in Eq.(31) 
so that w will always be recorded as a positive quantity. The final sunmmry 
curves are presented in Figs. 19 through 23 for the spiral-limited family and 
in Figs. 24 through 28 for the symmetric-limited solutions. The first curves 
in each set display radius ratio and central angle of the transfer with e as 
the parameter. The succeeding curves relate the remining variables to e and 
r2 /rl - 

Using the Summary Curves 

The solutions summarized in Figs. 19 through 28 constitute all arcs of 
elliptic orbits which can be used as transfer arcs in.putting together an 
optimal, coplanar transfer between elliptic orbits. However, the problem 
usually posed is one of selecting the proper arc or arcs to connect known 
terminal orbits, and nothing has yet been said to specify what orbits may be 
entered into or departed from using a particular optimal arc. It is possible 
to solve the general problem, that is, determination of the arc or arcs which 
should be used to connect given terminal orbits, by using the summary curves. 
Before describing the method to be used, however; consider the families of 
orbits which may be joined to a particular arc at a junction point. 

The Family of Terminal Orbits --------------- 

A terminsl orbit need have only a single maximum of p. Therefore, all 
ellipses are potential terminal orbits, although the family of orbits attainable 
from a given junction is restricted. To obtain the family of terminal orbits 
related to a given optimal arc, it is necessary only to treat each junction 
point as a single-impulse transfer, since the same conditions on the primer 
must be met. The results of Ref. 4, which treats necessary conditions for 
single-impulse transfers, are therefore directly applicable here. Iawden 
(Ref. 1, p. 116) gives expressions sufficient for calculating the primer 
constants, A, B, and D, in terms of e and f on the terminal orbit. For given 
AV, it is then possible to determine e and f for the terminal orbits in terms 
of known quantities at the junction, and in such a way that the primer is a 
maximum at that point. Moyer (Ref. 4) points out that when the impulse exceeds 
a certain value, the primer no longer has an absolute maximum at the junction 
point. The impulse must, therefore, vary between bounded values. Each AV 
is then associated with one member of the family of terminal orbits reachable 
at the given junction. 

The upper bound on AV is more simply understood by considering some possible 
primer loci in Fig. 29. The heavy curve displays a double maximum of p and 
is therefore the locus of a member of the family of optimal transfer arcs. When 
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an impulse is applied at one of the indicated maxime (point B) the primer locus 
is deformed; i.e., a new locus is formed which is tangent to the transfer arc 
locus at the junction point, and which has no higher maxima than that at the 
tangent point, B. A small AV produces a small deformation, such as curve a. 
Iarger AV's produce correspondingly larger deformations, e.g., curve b, untii, 
at some value of AV, a locus, c, with two equal maxima is produced. It is 
clear, then, that a still larger AV will result in a maximum at C which is 
higher than that at B. But this case is impossible since the terminal orbit 
must be entered at an absolute maximum of p. Therefore, as pointed out'in 
Ref. 4, an upper limit on AV exists. 

Multiple-Immulse Transfers ----- -------a 

The summary curves may be used to construct optimum transfers involving 
more than one coasting arc since the families of optimum arcs include all 
coasting arcs which may be used to make up an optimum transfer trajectory. 
For example, a three-impulse transfer would consist of two optimum coasting 
arcs joined together. At the junction common to both arcs, however, 
continuity conditions on r, #, and w must be satisfied. That is, the junction 
requires a unique radius common to the appropriate terminal of each arc, 
equal values of 4 to assure continuity of the primer across the junction, 
and equal values of w, since the normal component of velocity is unchanged 
by the impulse. If a plot of w vs @ is made using the data provided by the 
summary curves, arcs which may be joined together will be identified by 
crossings of their curves on the diagram. (The radius constraint is automatically 
satisfied since w is nondimensionalized by the local circular velocity.) 

While the method is feasible in principle, it suffers some serious draw- 
backs. First, the region of crossings is so extensive, and hence the number 
of cases to be tested so great, that it is impractical to consider this 
approach. Secondly, even if the crossings could be analyzed, the resulting 
transfer arcs would be extremely difficult to catalog, and they would still 
have to be tested against two-impulse transfers in particular problems to 
determine which is superior. 

Finally, a recent paper by Marchal (Ref. g), indicates that the region 
of optimum three-impulse transfers is restricted to a very small class of 
terminal orbits for which the ratio of the maximum apo-apsis radius to the 
minimum peri-apsis radius 2 21.0. Recently, two further limitations were 
added, (Ref. 14). 

OO <Iu!p&I < 22O 
(32) 

e, + e2 > 1.7127 



It is clear that both el and e, must be large and that the angle between major 
axes of the terminal orbits is quite restricted. 

Fixed Terminal Orbits ---------me 

The most practical application to which the summary curves can be put 
is that of determining the optimum transfer by two impulses between prescribed 
terminal orbits. Fortunately, this problem can be solved, and although the 
method involved is laborious, it requires only plotting and routine hand 
calculation to accomplish the desired objective. 

The method assumes complete knowledge of the terminal orbits, to be 
designated by subscripts I for the initial orbit and II for the final orbit. 
It is assumed that UII, the angle between the reference line and peri-apsis 
of orbit I, is zero as shown in Fig. 30, although this assumption in no way 
limits the choice of orbits. All angles are measured from a fixed reference 
line, and the angle g, with appropriate subscript, measures the angular travel 
from the reference line to a junction point. The subscript T-refers to the 
transfer arc. 

The first step is to assume impulse points 1 and 2, that is, to specify 
B1 and I%. This process determines Af and q/r,. 

Af = i32-$1 (33) 

2 = k1. 1 + eI cos B1 

rl a, l+e,, cos (Bz-% > 
(34) 

Now, using the summary curves for r2/r1 vs Af, eT is determined (each family 
of transfer arcs must be investigated separately). This in turn permits 
determination of wT1, the velocity normal to the thrust direction on the 
transfer orbit, and @, the thrust angle at junction 1. The normal velocity 
on the initial terminal orbit, WI, may then be calculated. 

tanBr = eI sin g1 
1 + eI cos pl 

(35) 

wI =Ja sin (8, - 4) (36) 

The angle 8 is measured between the velocity vector and the perpendicular 
to the radius at the impulse point. (A diagram illustrating the geometry at an 
impulse point is provided in Fig. 31.) It is noted that Eq.(3l) is an alterative 
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expression for w if appropriate subscripts are used. 

Since w,~ and wr will generally be unequal, it is necessary to vary S2 
to find the locations (e#) of the second impulse point for which wI1 = wI. 
By considering many values of B2, curves of wll and WI vs BP are generated; 
crossings of these curves indicate values of & i.e., locations of the 
second impulse point which satisfy the necessary conditions for the assumed 
Bl * At these points, & and wT2 are read from the curves and wzz is 
calculated. 

tan 8rr = eI1 sin t&i - %I> 
1 + eI1 ~0s (P2 - w11 (37) 

WII =Jm sin (911 - &2) (38) 

If this calculation is now repeated for a range of values of B1, curves 
of wls and wII vs S1 are generated; crossings of these curves indicate values 
of $p, i.e., locations of the first impulse point which satisfy the necessary 
conditions for the corresponding fiz's. Since it is not known, at the outset, 
into which family of optimal arcs the final solution will fall, it is necessary 
to consider both families. In some problems it may be evident that one or the 
other family cannot contain the solution and this knowledge would result in a 
considerable saving in labor. However, if a final solution is found in the 
first family, it is not safe to eliminate the other from consideration, since 
the solutions obtained can be considered as only local and not global minima. 

One simplification which may be made results from 'a conclusion of Ref. 4, 
where it was shown that thrust is always applied in a direction which lies 
between the local velocity vector and the perpendicular to the local radius 
(or 180 deg from this direction). In view of this result, the assumption can 
be made that lel~ltil. Furthermore, 9 and ~3 will always have the same sign, 
i.e., both velocity and thrust directions lie on the same side of the local 
horizontal. Therefore, it is permissible to assume positive signs for both 
8 and @ in performing the calculations, and as a result, w will also be 
positive. 

In using the summary curves for optimal arcs, Figs. 19 through 28, it is 
important to bear in mind that only radius ratios greater than or equal to 
unity are plotted. Reflections of these curves occur for r2/r1 > 1, and such 
cases must be investigated in solving a problem. Cases not plotted include 
Af > n and fil > n. As an aid in relating the data in the summary curves to 
the pictorial diagrams in Figs. 5 and 6, the following table has been prepared. 
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TABIEI 

Family 

Spiral-limited 
Spiral-limited 
Spiral-limited 
Spiral-limited 

Symmetric-limited 
Symmetric-limited 
Symmetric-limited 
Symmetric-limited 

r2 /rl 

>l 
>1 
<l 
<l 

>l 
>1 
Cl 
<1 

f, Af 
Radians Radians 

>o <l-I 

-co >ll 

>ll <ll 

<l-l >lT 

>o <Tl 

CO >ll 

>ll >ll 
Cl-l <l-l 

Impulse Directions 

s-s 

s-s 

o-o 

O-O 

s-o 

s-o 

s-o 

s-o 

The last column refers to the thrust directions, S designating an 
impulse in support of the motion and 0 an impulse which opposes the motion. 
It is interesting that all symmetric-limited transfers are of the S-O type, 
so that if an optimal arc is entered by an opposing impulse it is always of 
the spiral-limited family. 

As a further aid in solving problems by this technique, a flow chart 
describing the essential features of the method is provided in Appendix B. 

Solutions to a number of time-free orbital transfer problems are pre- 
sented in Ref. 3, using data from Ref. 15. In the latter paper, a steepest- 
descent program was carried out by a digital computer to obtain the optimum 
transfer solutions. One of these cases was selected for solution by the 
graphical approach described above in order to illustrate the method. 
Terminal orbits of the following characteristics were specified for the sample 
problem: \ 

aI = 1.01 aI1 = 1.43 

eI = 0.10 eI1 = 0.40 

W = 0" WI = 300 

In the course of solving the sample transfer problem, the curves depicted 
in Figs. 32 through 38 were prepared. Values of B1 and B2 between 0 and 2rr 
were chosen, and only enough points were calculated to adequately determine 
crossings. Since 181~1@1, combinations of S1 and gs which failed to satisfy 
this inequality were eliminated, thereby resulting in breaks in the curves. 
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Beginning with Figs. 32 and 34 for the spiral-limited family, it is 
apparent that several sequences of crossings occur as g1 is varied between 
0 and 2J7 (the heavy dots for Br = 0 and rr are single-point curves which 
belong to a sequence of crossings). When these are plotted as curves of 
wrI and wT2 against 8,, the sequences are seen to describe solutions of the 
types listed in Table I. However, only one sequence displays a crossing in 
the wII and wT2 vs B1 plots in Fig. 35; this then is a solution which 
satisfies all the criteria for a local minimum of AV. Similar sets of curves 
are shown in Figs. 36 to 38 for the symmetric-limited family, and in Fig. 38 
a second crossing is indicated. This solution and the spiral-limited 
solution mentioned previously correspond closely, having almost identical 
transfer ellipses and impulse magnitudes. However, characteristics of the 
transfer orbits are such that only the symmetric-limited solution is 
acceptable. The spiral-limited solution is unacceptable because its 
transfer orbit has greater angular momentum than either terminal orbit 
(a, = LOO < a, = 1.265 > a,, = 1.20). Since the spiral-limited solution 
requires both impulses in the same direction, the symmetric-limited solution 
must be the correct choice. 

The final solution involves a supporting impulse to enter the transfer 
orbit and an opposing impulse to establish the final orbit. The transfer 
ellipse elements are: eT = 0.365, A, = 1.265, a, = 1.460, and u.+ = 33 deg. 
Entry into the transfer ellipse is at f,, = 7 deg and departure is at 

z:F. 
= 182 deg so that Af = 175 deg and r,/r, = 2.145. In the units of 

3, total characteristic velocity for the transfer is AV//& = 0.1510 
of which 0.1310 is applied at the first junction and 0.0200 at the second: 

Contensou's Spools 

In a paper published several years ago, Ref. 16, Contensou considered 
optimal impulsive transfer from the point of view of the thee-ry of optimal 
evolution. Briefly, this theory, which is explained in Ref. 16 and elsewhere, 
considers a dynamic system defined by a position vector xi(t) and velocity 
vector zi(t), and interprets, geometrically, the domain achievable to this 
system at any time, t, in the accompanying hodograph space. The fundamental 
condition prescribed by the theory is that the geometric figure which describes 
the state of the system in the hodograph space be convex to assure an optimum 
trajectory. If it is not convex, the figure must be imbedded in the smallest 
possible convex body. The theory itself cannot be adequately explained here, 
but the result, as it pertains to the present study, is illustrated rather simply. 

The dynamic system is represented by the elements of an elliptic orbit, a, 
A, and w. The variation-of-parameters equations of celestial mechanics are 
used to describe the motion of the system. That is, the rates of change of 
these elements can be written in the form 

da = crf 
dt 

(e E #) I>) 
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- = olfi (e, E, @> dt (40) 

du, 
z= c&, (e, E, @) 

where E is eccentric anomaly, cy is thrust acceleration, and e and $ are as 
defined previously. These equations are the "velocity" components of a state 
vector composed of a, e, and w. If only small changes in the elements are 
permitted, the derivatives in Eqs. 39 to 41 may be replaced by incremental 
changes in a, a, w and t. Since t represents the time during which changes 
are made, i.e., thrusting time,and since thrusting time is zero in the impulsive 
case, it is convenient to replace t by V as the independent variable. This 
is easily done using the relation o = dV/dt. In terms of small changes of the 
elements produced by impulses, AV, the equations may now be written as: 

X = f$ (e, E, @) (42) 

Y = f$ (e, E, @> 

z = f$ (e, E, S> 

(43) 

(44) 

Even though time has been replaced by velocity, the equations still represent 
the rates of change of the system in the sense that, for small velocity 
increments AV, changes in state, Aa, Aa, and Aw occur. The x, ys z space, 
then can be thought of as the hodograph space of the system. Contensou showed 
that for moderate orbital eccentricities, the figure which results has the shape 
of a spool, as in Fig. 39A. The spool is hollow with walls of finite thickness, 
the x-y plane as a plane of symmetry, and the z axis as an axis of symmetry. 
Both the ends, 1, and the lateral surface, 2, are concave except for two small 
convex regions, 3, on the ends of the spool. 

The origin is the initial state; by a velocity increment,? AV, a new state 
is established and the locus of reachable new states, by this AV, forms the 
spool. Because of the definitions of xg y, and z, the velocity change, AV, is 
not a parameter of the diagram and may be thought of as unity. Larger AV's 
result in spools of larger dimensions? but with the same shape,? as long as 
changes in the elements are kept small. 

Applying the theory, it is required that the figure be convex. However, 
the spool is obviously convex only in regions 3. Therefore optimal transfers 
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to the states within 3 are possible directly from the origin by single impulses 
of magnitude AV. Single-impulse transfers to the regions 1 and 2 are possible 
butnonoptimizing, because the figure is concave over these portions of the 
surface. The theory requires that the figure be made convex by imbedding the 
spool within the smallest convex body, which can be thought of as an elastic 
membrane stretched over the spool. The membrane joins the convex regions by 
an envelope of straight line segments such as A-A' and B-B' in Fig. 39A. The 
points A, A', B, and B' are the contact points of the membrane with the spool, 
and because each such generating line touches the spool at just two points, 
two-impulse transfers are optimum over the concave portions of the spool. 
In effect, by using two impulses instead of one, the set of reachable states 
with a given AV is extended from the spool surface to the membrane; or 
alternately, a smaller AV is required to achieve a given state x, y, z, by 
constructing a smaller spool such that the membrane and not the spool includes 
the state point. 

Contensou verified the geometrical interpretation by considering a known 
case, namely the Hohmann-type transfer. It is known that if the orbits are 
co-axial, a Hohmann transfer is optimum. In the x, y, z domain the co-axial 
condition implies no change in z, since AU = 0. Therefore, a diagram in the 
x-y plane is sufficient to describe such transfers. Such a diagram is 
illustrated in Fig. 39B. Here it is seen that the entire diagram is concave, 
and the -four contact points, L, M, N, and P, must be used as impulse points. 
The line LM in Fig. 39B is the locus of E = TT, and NP is the locus of E = 0. 
At L and P, @ = 0, and at M and N, # = n. Thus, for example, to transfer to 
a state between L and N, these points are the contact points of the spool with 
the membrane and they determine the optimum values of E and @. A forward 
impulse is applied at E = n, followed by a backward impulse at E = 0, or vice 
versa, to effect the transfer. 

It is interesting that the families of transfers discovered in the course 
of the present study occupy unique regions on the spool. The symmetric-limited 
family occupies the lateral surface of the spool, while spiral-limited transfers 
exist only on the ends of the spool. These families are separated by the small 
regions, 3, in Fig. 39A over which single-impulse transfers are optimum. 

To determine the use of the spools as a tool in understanding optimum 
orbit transfers, a program was written for the Research Laboratories' digital 
simulator. Input to the computer consisted of the variaticn-of-parameters 
equations in the form of Eqs. (42) through (44). The output was displayed 
visually as lines of constant E and/or c$ in a three-axis representation. 
Figures 40 and 41 depict the shape of the spools and the character of the 
generating lines for e = 0.5. Generally, lines of constant E run along the 
length of the spool., forming closed curves. Lines of constant $ also form 
closed curves, but are more nearly perpendicular to the spool axis. 
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To study the spools systematically, the same views of the output were 
photographed for a range of eccentricities. The photographs appear in Figs. 
40 through 48 for eccentricities ranging between 0.25 and 0.875, (but not 
in that order). Unfortunately, eccentricities above 0.875 were precluded by 
storage limitations of the program, and, while an improved program might have 
alleviated this limitation, time did not permit such an extension. 

Considering first a moderate eccentricity, e = 0.5 in Figs. 42 and 43; the 
upper photograph shows the spool from the direction of the negative z axis 
(the x-y-z triad is right-handed). Lines of constant E are used to generate 
the spool; @ varies over each generating line. In the lower view, lines of 
constant E and # are both used to generate the figure, as seen from the 
direction of the positive x-axis. Here it is seen that the ends of the spool 
appear convex. Actually it is the four points, L, M, N, and P, in the x-y 
plane which cause the ends to look convex from this view. These are, of 
course, the Hohmann transfer points which separate two distinct regions of 
single-impulse transfers on each end of the spool. 

Another interesting view is one looking into the end of the spool. In 
Fig. 43, two such views, one using E lines and one using # lines, reveal the 
hollow nature of the figure. Only the z-axis appears in true length in these 
views. 

When eccentricity is increased, the spool displays a general flattening 
at the ends and a skewed stretching in the lengthwise direction. Three views 
for e = 0.75 are shown in Fig. 44, the same two orthogonal views shown for 
e = 0.5, and the end view. In the lowest picture, the flattening of the 
spools is evident. The stretching and skewing effects are illustrated by the 
other shots. Further increases in eccentricity accentuate these effects as 
shown in Figs. 45 and 46 for e = 0.875. 

The limiting case of e = 1.0 results in a doubly infinite extension 
along the x-axis so that the simulation may not be carried out to very high 
eccentricities. This limitation is unfortunate since a change in character 
is to be expected at e m 0.925, according to Ref. 4, where three-impulse 
transfers are superior to two impulses for some cases. 

For e = 1.0, the variation-of-parameters equations reveal the shape of 
the spool to be doubly-infinite along the x-axis and to form a surface with 
four humps, Fig. 47. The contact points of the surface consist of: x = f a,, 
where 6 is undefined and E = 0 and 2rr respectively; the extreme points on the 
y-axis, for which E = n and 9 = 0 or n; and four "hump" points for which 
E = n/2 and 3n/2 and 9 = 0 or n. An interpretation of these impulse points 
for e = 1.0 is shown at the bottom of the diagram. One point is always at 
the origin, corresponding to x = f m in the sketch. It is to be expected that 
the value of rj be undefined at the origin, since acceleration here is infinite 
and velocity (AV) may be added in any direction. Actually $ = n/2 for the 
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positive x-axis and 3n/2 for the negative x-axis, and these values may be 
assumed to hold for the first impulse point. The second impulse point lies 
between E = n/2, which is at a distance a from the origin, and E = TT, which 
is the apo-apsis. The second impulse always features @I = 0 or n. Of the 
four possible combinations shown, two fall into each of the transfer families 
determined in the study. 

When eccentricity is less than 0.5, the spools undergo a flattening in 
the opposite direction. In Fig. 48, for e = 0.25, this effect is especially 
evident in the second view, while the first view reveals a flattening of the 
ends of the spool. As e - 0, Fig. 49, the spool reduces to a plane such that 
x = y. Furthermore, the spool's ends also become flat with # = 0 on one end 
and # = TI on the other, and all constant-# lines are vertical (in the z 
direction). On the upper and lower boundaries, which are concave, E and # 
vary, but at the sharp end points, E = n/2 or 3rr/2. Thus, the interpretations 
shown at the bottom of Fig. 49 are possible with the transfer angle always 
equal to n, Since the peri-apsis point of the circle is arbitrary, the impulses 
may be applied at any opposing points on the orbit. 

In Ref. 9, solutions have been obtained in expansion form for eccentricities 
that approach zero and 1.0. These solutions are of interest because, as e -) 
1.0, a third family of optimum transfer arcs is introduced. The number and 
locations of impulses for these limiting cases are presented in Ref. 9. 
Also, as e + 0, the spiral-limited solutions appear as arcs of varying lengths, 
with tangential impulses at each terminal. 

LINEMIZEDNONCOPIANAR TRANSFERS 

Linearization of the Problem 

The general noncoplanar transfer problem is difficult to solve, even 
though Iawden has derived expressions for all three primer components (Eqs. 
1 through 3). However, it has been shown in previous analyses, Ref. 17 for 
example, that if the equations of motion are linearized about a circular 
orbit, the resulting equations for the primer components are greatly simplified, 
being independent of eccentricity. Significantly, for the linearized problem, 
the primer remains unchanged throughout an optimum transfer. That is, it 
remains the same over impulses and coasting arcs of the trajectory (to first 
order). 

The basic assumption in linearization of the problem is that only small 
changes are allowed in the orbital elements. This assumption is tantamount 
to specifying that the terminal orbits, as well as the transfer orbits, must 
be "neighboring" orbits of smsll eccentricity. With these assumptions, it 
was shown in Ref. 17 that the primer equations take the form 
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X f Acosr + Bsinr (45) 

P= D - 2Asinr + 2Bcosr (46) 

Y = GCOST + Hsinr (47) 

In these equations, the independent variable T is a nondimensional time 
parameter which was used in Ref. 17. However, to first order, T is equivalent 
to angular travel, and therefore Eqs. (45) through (47) are identical to the 
equations derived by Lawden in Ref. 1 for the case of e = 0. 

A simplification introduced by ikwden in Chapter 6 of Ref. 1 is also 
permissible here. The constants A and B may be replaced by grouping terms 
in the equations and introducing two new constants, R and T,, where the latter 
is a rotation of the angular reference axis. 

A = Rsin (r + 5) (48) 

CL = D + 2Rcosk+5,) (49) 

Y = Ecosk + rO) + Fsln(r + ro) (50) 

But, since the direction of the reference axis is arbitrary, i.C will be 
assumed that T, = 0. The resulting primer equations for the linearized, 
noncoplanar problem are 

A = Rsinr (51) 

CL f D + 2Rcosr (52) 
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Y = Ecosr + Fsinr (53) 

Analysis 

The method of treating transfers in the noncoplanar case is the same in 
principle as that for coplanar arcs except that the primer equations are much 
simpler and the maxima may be determined exactly. For given values of the 
constants, the primer locus lies in a plane. In fact, it is interesting to 
note that the locus is precisely the intersection of the elliptic cylinder 

4X2 + (u -D)’ = 4 (54) 

and the plane 

FA + - a R,, 

2 = 0 (55) 

Moreover, it is possible to show that double maxima of the primer occur only 
for certain values of the constants. 

The problem is essentially to determine two values of 7, say T1 and TV, 

such that the following conditions hold: 

‘-4 PI2 = P,* 

ap, 
dt = 0 

dP2 
dT 

- 0 

where P1 = P (T1), Ps = P (T2), etc. If two such values exist, then the 
following equations must also hold: 

(56) 

(57) 

(58) 

P,’ - P*’ = 0 (59) 
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ap, 
Br- =o (UP) 

ap, h2 
dY+-x” =o (61) 

When the cc;mponents of the primer are substituted in the abo-ve: a sys'xm of 
equations of the following type results: 

ICI QC = - 2 car. (T, 4 iz ) COS ( 13_r?L) 
_. 

(63) 

(6’1) 
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if Eqs. (62) thrcugh (64) are to have a sclution fcr al'bikary values cjf the 
cf,iistants M, N, and Q, the determinant of coefficients must vanish. That is, 
c>mitt?'ng the arguments 71 and T2 tc simplify notation, 

le re,sult, tha-1; 

(66) 

Solutions 
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(B) sin ( 
fl + rr 

2 ) -0 

T2 = ‘T, 

-2RD 
COST, = 

3R2+ E’- F2 

E= 0 

4R2D2 I (3R’ - F ZI’ 

3R2 < F2 

D = 0 

E = 0 

3R2 = F2 

(69) 

(70) 

chin inequalities of Eq. (69) insure that cos 71 s 1, and that the stationary 
point is an actual maximum. 

It is apparent from Eqs. (68) that all transfers of type (A) have central 
angles of 180 deg, since 71 and T2 are longitudes of the impulse points. 
Noncoplanar transfers of the Hohmann type, as discussed bjr Long in Ref. 8, 
must therefore be special cases within (A) since apsidal impulse points are 
required for the Hohmann-type transfers but are not required in family (A). 

Family (B) transfers possess the unique feature that 72 = - TV, so that 
transfers of all central angles are included in this family. The special case 
71 = 90 deg, T2 = -90 deg is one which belongs to both families (A) and (B). 

The above equations express the necessary conditions required to determine 
all the optimal arcs for transfer between neighboring, low-eccentricity orbits. 
The problem of cataloging these results in some manner so as to be useful in 
a particular transfer maneuver still remains. 

It should be pointed out here that the method followed in cataloging 
coplanar transfers could have been pursued in the noncoplanar problem too. 
However, in the former case, an explicit soluticn of %he two point boundary 
value problem was not possible, whereas the linearized noncoplanar problem can 
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be solved entirely. The results can be expressed in terms of the character- 
istics of the terminal orbits, facilitating the calculation of AV (and other 
pertinent parameters) for arbitrary two-impulse transfers. To this end,.the 
Lagrange planetary variables are now introduced as a means of determining 
instantaneous changes in the orbital elements. These variables are particularly 
useful because, through their use, singularities are avoided when i and e 
approach zero. The entire maneuver is now viewed as a perturbation of the 
elements at time T1 caused by an impulse u1 = AVl/Vo, followed at time -r2 by 
another perturbing impulse, u2 = AV2/V0. Multiple-impulse transfers can be 
treated similarly with the total impulse being the sum of the individual uifs. 

The planetary variables as used herein consist of the nondimengionalized 
semimajor axis,xl = a/ac,snd the following combinations of the remaining 
orbital elements: 

x2 = esinw 

x, = ecosw 

x, = Sin i sin 51 - i sinJ2 

XI = sin icosa - icosQ (71) 

The equations for small rates of change of these variables were derived 
previously in Ref. 17 by starting with the equations for variation of the 
elements, transforming to the planetary variables, and dropping second and 
higher degree terms in e, i and Aa. 

dx, =2”tL 
dr P 

2 = Q(2 p pin-r - ACOST) 

de 
‘dr = P 

Q(2ttcosr + XsinT) 

(72) 

(73) 

(74) 

d% = a vsinT 
dr P (75) 
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dXg = QVCOST dr P (76) 

where cy is the thrust acceleration. While these equations apply for finite 
thrust periods, a transformation from time to velocity as the independent 
variable is desirabl.e for the impulsive case* Assuming small changes in the 
elements, the dx, may be replaced by Axi, and ode by AV/V,. 

A& = 2CL 
AV vop 

2 = & (&Sin7 - AcosT) 
0 

(78) 

-=- COST -I- kiinT) 

(77) 

(70) 

(W 

(81) 

For a given transfer, these equations may be integrated or summed to determine 
the total change in the orbital elements between initial and final terminals 
orbits. 

Eefore in,egratFng 3:ese equations for the Pamilles of transfer arcs) 
~ys. (63) -ihrough (TO)> it is noted that no solutions exist for F= 0 and 
arbitrary values cf the remaining constants. Accordingly, the primer componz~ts 
may be normalized by this constant F, eliminating F from the remainder of the 
analysis. The justification for arbitrarily setting F equal to unity is that 
the magnitude of the primer at the impulse points is arbitrary, as long as the 
maxima of p are equal. T Since F i-s never zero it i.s permissible to normaljze 
;iitJh respect to it. The following system is thus derived by substituting the 
primer components snd integrating over- two impulses: 

P*Ax, = 2D u1 ( + u2) + 4R(ulcosT1 + uaccs~,) (62) 
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P"l!%-;r, = 2D(u1Si?i71 i- uasinT2) -t 3R(ulsinT,cos7, + u,sinT2cosl-,) (83) 

P'AXS = 2D(ulcos7, + u2cosT2) i R(u,(l -I- 3cusz7,) + u2(l + 3~0~~7,)) (84) 

poAxs = E(u,sinTlcosT, + uasinr,cosTz) + u,sin"71 + u2.sin27p (85) 

r 

P'AXE = E(ulcos"'r, + u~cos~?~) + ulsin7,cos71+ u,sin7,cos7, (86) 

These equations must now be investigated for each of the families predicted 
in Zqs. (68) through (70). Consider the family of solutions (B) with Eqs. (69) 
abC)ve " It is seen that TV = - TV, cos 72 = cos TV, and sin 72 = -sin TV. 
A f13w definil.i.ons are necessary to faci1.i tate the derivation of' the eyrlations ~ 

u = ‘1,. -I- up E = 22 
u 

T E tan (iij - 3) 

(87) 
I - 26 = .u_L-23% 

U 

Slili:t? li I‘cj21~l’.j~~Iit.L~ ?.I!= !d , I 3 ! ( ;~~nd ime~lsiljnal, chara'-tt:ristic vf:loc:ity ot 
the t.ran:;fer il; is ,:lear thal E i:; mi2rel.y the fracti.on of' u expended at the 
seconcl impulse point. The variables Z and '5 :lre explaii~ed in Fig, 50, in 
the upp?i- diagram the variables xa and x3 are s?en to i,epreseilt comptinents of' 
an "eccentricity vecioi." defined by magnitude e and argument CU. Thus, if - 
~;i~b:;i:i.ipLs 1 a,ld 2 denote terminal orbits, the vectors e, , and gz are described 
bY "1 , e7 ; q a 1-d lli,? . 'C11ft vect.or change il; eccc;nt~ ic i?y -bJhicfl resu1.C.s from a 

i.l'Bi!s:'er' i'!'OIil ~.;rl;iC 1 xc Grbii. Z is defilied by Ae and i3 as shown in the sketch. 
It is clear that .ta11 9 iLs*the ratio of Ax2 tc; Ax3 . 

The angle !? in the lc.~er diagram of Fig. 50 has a similar interpi-otal,ion. 
In this cask the niagrli-iu;ie iif' a vector is i and i-ts arglunent j.s 3. Theref'orc - 
n mav be thCLifillZ cf as the argumen-t of tiie vector change in inclination, 
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Substituting Eqs. (69) as well as the absolute value, P, of the primer in 
Eqs. (82) through(%) yields 

Ax, 2c JiTF -= 
U (1 - 3R2)c'+ 4R2 (88) 

h8 a1 - 26)cs 

; = /- J(l - jRa)c2 +, 4R2 
(89) 

&Ula 2(ca + R2) 

-i- 'm J<l - 3R2)c2+4Ra (90) 

A% 2Rs2 

-;- =hTd(l - 3R2)c8 + 4R2 (91) 

hi 2R(l- 26) 

y = +/I-& - B2)ca + 4R2 (92) 

In these equations c = cos TV, s = sin TV, and the constant D has been replaced 
by its equivalent from Eq. (69), (l-3R2)c/2R. (Note that due to the normaliz- 
ation of the equations, the constant F no longer appears.) It then follows 
by Eqs. (87) that 

T = c1 - 26 2c=s - (c" +R2)S 

(1 - 26)(1 + R2)c (93) 

or 

(1- 26) = T(l+R2) -h2(1 +.R2)' + 4s2(c2+ R2) 
(94) 

2sc 
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Noting from Eqs. (71) and (83) through (86) that 

- - - sin w + - cos U: Ae -Ax2 . - Ax3 
U U U 

(95) 

and 

& = &a u sinli + * cosll (PG) 
U 

the following equations for small changes in the three orbital elements a/a,, 
e, and i may be derived: 

A$ 2cp 
-= 

U Jl - 3R’)c’ + 4R2 (97) 

Ae -= 2 
U (I- 3ti)c* + 4RZ [ T’(I+ R2) + 2(c2 + RT 

- T JT’(l + R*)* + 4s2(c2+ R2) 1” 
(98) 

ni 2 
-ii = R\: (1 - 3R2)c2 + 4R’ I T’(I + R*) + 2s' 

(99) 

- TJT*(I + R2)2 + 4s2(c2 + R*) 1 t 

These equations hold only for family B. However, similar equations may be 
derived in the same manner for the solutions (A) with Eq. (68). When D = 0, 

Ai 
J 

3T(4T - E) 
u 

= 
(I + ET)(I + l6T9 

(100) 

(102) 
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A special case (A') for solutions of- type (A) exists for which R = T = 0 
and D # 0. The following are the equations for the changes in the orbital 
elements for family A'. 

A% 20 -= 
u Jm 

&= 2D(l- 28) 
U -/I + E2+Dz 

Ai Jm- 
-= 

U JI + E2+IT 

(103) 

(104) 

(105) 

Representation of.Solutions 

Because of the large number of parameters required to describe a 
noncoplanar transfer, it is difficult to represent the optimum solutions in 
a straight forward manner. For example, while Figs. 5. and 6 clearly describe 
the behavior of the primer over coplanar transfer ellipses, a similar diagram 
in the noncoplanar case requires an out-of-plane thrust component. Therefo.re 
the behavior of the primer cannot be adequately represented in two dimensions. 

Even though the number of physically significant parameters is numerous 
however, there is a concise way of representing the noncoplanar transfers if 
new parameters are introduced. These are the quantities n, w and T defined 
in Fig. 50 and by Eqs. (87) above. As has been explained in the preceding 
discussion the parameters z and 5 represent the arguments of changes in vector 
eccentricity and inclination. They therefore have indirect physical 
significance in that the parameters can be measured in a vector diagram of the 
type shown in Fig. 50, but they do not appear directly in a diagram of the 
transfer trajectory itself. 

In Figs. 51 through 53 noncoplanar transfers have been summarized for all 
possible changes in the elements of the elliptic terminal orbits, A(a/a,)/u, 
Ae/u and Ai/u. The angle w - 3 = tan-l T has been held fixed in each diagram. 
If this angle is 20 deg, for example, and the elemental changes Aa, Ae and Ai 
are given, then the nondimensional characteristic velocity, u, of the transfer 
can be determined from Fig. 52. Of course G - n must be calculated from e,, 
e2, il, i2, WI, w,, n, and ?Q in a particular case, and interpolation between 

36 



diagrams would ordinarily be required to determine u. Therefore it is apparent 
that these diagrams are insufficient to summarize all noncoplanar transfers but 
are intended only to illustrate the behavicr of the solutions, particularly 
with regard to the domain of solution space occupied by the three families 
determined in the analysis. The different families of solutions are indicated 
by shaded areas in these diagrams. It is noted that as z - n increases, the 
singular region grows, while at 6 - a = 0 the singular region shrinks to a 
point in the upper right-hand corner of the diagram. 

While the practical use of the diagrams is limited, it should be pointed 
out that the above sets of equations lead to an explicit determination of the 
optimal transfer between terminal. orbits whose elements are known, for it is 
possible to eliminate 'the constants in these equations until all the important 
parameters depend only on the changes in the orbital elements. The algebraic 
derivation of these relations is simple and straightforward, but lengthy. 
Therefore the derivation is not included here. However, the complete set 
of equations governing an optimal transfer, as well as the procedure for 
calculating these transfers for fixed terminal orbits, may be found in 
Appendix C. Only the expressions for the total impulse for each case are 
listed below. Here, I+, refers to the solution defined by Eqs. (97) through 
(99), Us to Eqs. (100) through (102), and U~V to Eqs. (103) through (105). 

lb; = $[2(Ai)’ + 2( Ae12 - (A*o)2 ] 

[(Ae)’ + (A&)‘+ (Aif]’ - 4(ae)2(a&)2 - 4(Ae)‘( Ai) 

2m 

2 
(Ae)*(l + 4T2) + 4(l + T*)!A i)’ 

UA = .-~- 
4(l + T2) 

2 

UA’ = 4(Ai)’ + (A$ 

T* I ($+)*-I 
(107) 

(Ae)’ 5 (Aa) (io8) 

The above discussion outlines the method of determining the optimum among 
all two-impulse solutions. However, such solutions are determinate only when 
all the quantities involved (as they appear in Appendix C) are meaningful and 
all inequality constraints are satisfied. If, for a particular case, these 
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conditions are not met, then the solution must be of a singular nature. These 
singular solutions result when the primer vector is everywhere constant, i.e., 
when E = D = 0 and Rs = l/3. The desired changes in the elements correspond 
to a point in the singular region on diagrams of the type indicated in Figs. 51 
through 53. 

The singular solutions correspond to three-or-more-impulse maneuvers. The 
boundary conditions cannot be satisfied using only two impulses. It is necessary 
to integrate the equations of state assuming three or more impulses placed so 
as to satisfy the given boundary conditions. Indications are that three impulses 
will generally suffice. 

Sample Calculation 

To illustrate the use of the equations in Appendix C for calculating 
noncoplanar transfers, a sample case has been computed. It consists of a 
transfer between low altitude Earth orbits of small eccentricity and inclination. 
If a reference orbit altitude of 150 n mi is chosen and the terminal orbits 
are of such size that Aa/ac = 0.001, then as = 3591.795 n m and a, = 3588.205 n m, 
where Earth's radius is 3440 n tn. The eccentricities of the orbits are assumed 
to be e, = es = 0.001. For convenience the inclination of the first orbit is 
assumed to be zero, and q is chosen as identical with L&. The remaining orbit 
elements which must be chosen are i2, u$, and u.+. The value of G is not 
arbitrary but depends upon the type of transfer and the initial direction of 
the radial reference axis. The inclination is is set at 0.01 radians, or a 
little more than half a degree. The other parameters are arbitrarily chosen as 
ro, = 90 deg and ru, = 1 deg. 

The first step in the computation was to determine the family into which 
the transfer falls. Accordingly, the inequalities of Equations (C-5) through 
(C-ll) of appendix C were tested and required that this particular transfer belong 
to family (A). 

Equations (C-12) of Appendix C are now employed successively to calculate 
the characteristics of the transfer. Thus 

D=O 
r1 = -0.444 deg 

$ 
= 179.556 deg 
= 0.0001005 

E= -128.4615021 
R = 4.5019246 
6 = 0.1433198 

n,= -0.444 deg 



The components of the incremental AV at each impulse point can be calculated 
by properly scaling the primer components 1, kr v. For example, at the first 
impulse point Eqs. (51) through (53) give 

If these are scaled so that their modulus is u, then the AV components at the 
first impulse point can be calculated. Thus 

x1 = -0.0349152 
c11 = 9.0035783 
VI =. -128.4653g5o 

Ah - = -0.0000023 
VO 

6 - = 0.0006004 VO 

AVv 
- = -0.0085674 

V.3 

The velocity components on the initial terminal orbit are easily calculated 
from standard equations so that addition of the above AV components yields the 
velocity components on the transfer ellipse at this point. This in turn permits 
calculation of the elements of the transfer ellipse. 

EL = 1.0068241 
a, 

e7 = 0.0780024 

AL = l.ooo6g81 
a, 

h = 0.5111 deg 

The angular positions of the impulse points are provided by TV and 'ra. 
In the initial terminal orbit the impulse occurs at f, = or -4 -u+. The final 
terminal orbit is entered at f, = me -Q -ws. Therefore,f, = -wl = - 1.0 deg 
and f, = 90.0 deg. Radii of the impulse points are then easily determined by 
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I 
1 = 

1 
1 + e CO8 f (log) 

Thus 

True anomalies of the impulse points in the transfer ellipse can now be 
calculated from 

cos f = $ ; -1 c 1 (110) 

Thus 

f-11 = 88.383 deg 

f1a = 269.854 deg 

and finally 

Afr = 181.471 deg 

The last figure gives an estimate of the error involved in the calculation 
since type (A) transfers have central angles of 180 deg. The angular error is 
then 1.471 deg in a transfer arc of 180 deg, for an error of 0.817 per cent 
in Af,. 

In using the noncoplanar solution equations it must be understood that it 
is the parameters Aa, e, and i which have been assumed small. Errors are 
introduced when any of these parameters are not sufficiently small that their 
second degree terms may be neglected, although there is no simple way of knowing 
in advance that this is true in a given case. Still, it is apparent that if 
values of 0.1 are chosen in these parameters, the square of each parameter is 
smaller than the parameter itself only by a factor of ten. When the values 
are chosen to be 0.001, their squares are smaller by three orders of magnitude. 
In the latter case it is to be expected that the linear solution will be quite 
accurate, but in the former case large errors may be introduced. 

Previous experience with linear solutions of this type indicates that for 
marginal cases, some of the linear solution equations-will closely represent the 
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exact solution, even while others fail badly. For example, in Ref. 18, a 
linear solution for low thrust rendevous and transfer was applied to Earth- 
Mars and Earth-Venus trajectories with some success even though the linearizing 
assumptions were not expected to hold. In that instance it was found that 
the prediction of thrust direction was good in cases where fuel consumption 
was badly in error. Furthermore it was found that though the magnitudes of 
the errors were large in some cases, the general character of the solutions 
( i.e., variation with launch date) closely resembled the exact solution. 

In view of the significance of near-Earth rendezvous and transfer at 
the present time, the linearized noncoplanar solution might be applied to 
predict optimum maneuvers.in cases where only small changes are required. 
Recent experiments in the Gemini program have involved orbit changes which 
fall within the linearizing assumptions. Therefore it is to be expected that 
the present linear solution could provide at least a first approximation to 
fuel consumption, thrusting points, and thrusting directions in such transfers. 

CONCLUDING REMJRKS 

Solution of orbital transfer problems by the method of primer vector 
maximization has been shown to be feasible for time-free transfers between 
coplanar ellipses and between neighboring noncoplanar orbits of low eccentri- 
city. The method may also hold promise for transfers in fixed time if the 
complication introduced by an additional parameter is not severe. 

Lawden's symmetric transfer and his spiral solution have been shown to 
be limiting cases of the two families of coplanar transfer arcs determined in 
the study. Hohmann-type transfers are also limiting cases in both of these 
families. By using the catalog of optimal arcs presented herein it is 
possible to solve problems where the two terminal orbits are specified. 
Although the method of solution is lengthy, it can be accomplished by plotting 
and desk calculation alone. 

When the coplanar problem is interpreted geometrically using the theory 
of optimal evolution, as described by Contensou, the families of optimal arcs 
determined in the study can be observed. The families occupy distinct regions 
on a spool-shaped figure in a hodograph space, and are separated by regions 
over which single-impulse transfers are optimal. 

In the case of noncoplanar transfers between neighboring orbits of low 
eccentricity, explicit solutions have been obtained in equation form. These 
equations allow direct calculation of impulse requirements for one- and two- 
impulse transfers if knowledge of the terminal orbits is complete. Moreover, 
the regions of solution space in which three or more impulses may be optimal 
are indicated. 
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Because the noncoplanar solutions have been obtained in closed form, the 
solution equations may be applied directly to practical problems. An immediate 
application is the rendezvous of bodies in near circular, neighboring, earth 
orbits when transfer time is left open. Current rendezvous experiments in the 
Gemini program involve orbits which fall into this class. Estimates of fuel 
consumption for arbitrary noncoplanar transfers lnay be obtained by substitution 
of the orbital elements of the ellipses into the equations derived in this 
report. 
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APPENDIXA 

Necessary Conditions for Optimum Coplanar Coasting Arcs 

Two conditions must be satisfied at each junction. These are indicated 
functionally by Eqs. (16) through (19) in the text. The exact form of these 
equations is: 

P * = AZ+ 2B(O - 2Asinf) + B’(I + e* + 2ecosfl 

+ -0s Y 2ADsinf (2 + ecosf 1 + A2 sin’f (3 + Eecosf) (A-1) 
(I + ecosf12 

dpS 
df- -2eB’sinf - 4ABcosf 

+ (I + ecosf )m3{2eD2sinf - 2AD(3e + 2cosf + e2cosf) 
(A-2 > 

+ 2A2sinf(5e + 3cosf + Ee’cosf - 3esin2f - e2sm2fcosf)} 

With Lppropriate subscripts, 1 or 2, on p and f these equations can be 
applied to both junctions. 
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APPEEBMB 

Flow Chart for Solution of Fixed Terminal Orbit Problems 

Given: eI, eIII k, QI, c0r1) bI = 0) 

(a> 

(b) 

(cl 

(d> 

(e) 

(f) 

(d 

(h) 

(i) 

(J) 

assume B1, Pa 

compute bf, r-s/r, from Eqs. (33) and (34) 

from Figs. 19, 24 determine el 

from Figs. 20, 25 determine #, 

from Figs. 21, 26 determine wTl 

compute Qr and wI from Eqs. (35) and (36) 

if VT1 # wI return to (b) and repeat for new Bs 

continue until wTl = wI at Bp = e,"; find all such @zs 

pick a s,"; read & and wTa from Figs. 22, 23, 27, 28 

compute err and wrr from Eqs. (37) and (38) 

if 4, # wIf return to (g); repeat for all pzs 

continue until wts = wII; all such points are candidates for 
the optimum two impulse solution; by comparing AV's the best 
solution can be determined 
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APPENDIX c 

Calculation of Noncoplanar Transfers 

If the elements of the terminal orbits satisfy e,, e, << 1, (aa-a,)/ao << 1 
and I,, ia C< 1, then the linearizing assumptions are satisfied and the 
noncoplanar analysis applies. It is assumed that the elements of the terminal 
orbits are entirely specified. That is, %J %2> e1, %, %9 %, il, h!, n, 

and% are known. A good choice for the circular reference orbit is one for 
which ae = (ELI + %3)/2, since this minimizes the radial excursion from the 
origin of the reference axes which lies on the reference orbit. 

It Is convenient to choose the initial orbit plane as the plane of the 
reference orbit so that i, = 0. Since n, is arbitrary, the choice q = G 
determines the initial direction of the radial reference axis.' Then all 
relevant quantities, including the incremental changes in a, e, and I and the 
parameter T = tan (;a), depend only on the geometry of the orbits. 

Ae = ./a: - 2e,e&os (w, - w,) + C,* 

Ai = it 

(c-1) 

(c-2) 

(c-3) 

T = 
f e,sin w, 

Ai - e, cos y (c-4) 

The latter three equations follow from trigonometric properties of the diagrams 
in Fig. 50, where all angles are measured from the same reference line. 

The particular family into which a given transfer falls is then determined 
by the following sets of inequalities: 
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(Ai)’ 2 l2TL/(l + 16T’) (c-6) 

Family (A') 

T= 0 ond (Aef I (Ao/~,,)~ (c-7) 

W3) 

(c-9) 

SiIlgUltU? 

I + T’ < (Ae)t/(Aa/oo)L and (Aif < 12Tt/(I + l6T’) (c-10) 

or I + Tt > (Ae )‘/(Aa/a,,f and R’ > l/3 (c-11) 

In the case of singular solutions, two-impulse transfers do occur and the 
total impulse for the maneuver can be calculated. However, it is difficult to 
determine the locations and sizes of these impulses along the transfer ellipse. 
It is notable that little or no improvement in the total impulse results from 
resorting to higher numbers of impulses. For the other families of transfers, 
all important parameters can be calculated. 

D = 0 

ton 7, = -4f 
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,,a = (de)?1 + 4ft) + .4(Ai)’ (I + T’) 

4(l+ T’) 

E = 12u’T’ - (Ail? ( I + l6T’) 
fC3u’ + (Ait (I + 16Tt)] 

Rt = (4T - EKI + 4Et) 
l2T 

Family (A') 

T, i$ arbitrary 

rt - r,+n 

E.I 
tonr, 

t _ 4(Ai)z+ (A$-)’ 
u - 

4 

(I -28) = Ae 
5 

00 

n I t= T 
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ut = )[2(Aif+ 2(Aef- (~kr] 

+ 
I + TtI [[CA& + (A$‘+ (Ai?]’ - 4(Ad (A$] - 4(Aef (Aif 

2m 

Rt = 
’ - (A&,’ -.4(Ai) 

4’:: 
- 4fAeI’ + 3(At)’ 

adr, = 
4R’(A $)’ 

4(l + R’)u’ - (I - 3R?(A$) 

(c-14) 
rt= -r,. 

0 t (’ - 3R’kosr, 
2R 

(I - 28 z T(I + Rt) f &‘(I + R’)’ + 4sintrI (R’ + COS~T,) 
1 

+ for T < 0 
2sinq cosr, -forT>o 

tan& = tan?, /(I - 28) 

The remaining equations hold for all three families 

ut = au 

u, = u - ut 

A = R sinr 

CL = D + 2Rcosr 

(c-15) 

(c-16) 

(c-17) 

(c-16) 
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‘: 
;i 

Y = ECOS~ + sinr 

P = Jx’+g+tf 
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